3x^2+6x=514

Simple and best practice solution for 3x^2+6x=514 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+6x=514 equation:


Simplifying
3x2 + 6x = 514

Reorder the terms:
6x + 3x2 = 514

Solving
6x + 3x2 = 514

Solving for variable 'x'.

Reorder the terms:
-514 + 6x + 3x2 = 514 + -514

Combine like terms: 514 + -514 = 0
-514 + 6x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-171.3333333 + 2x + x2 = 0

Move the constant term to the right:

Add '171.3333333' to each side of the equation.
-171.3333333 + 2x + 171.3333333 + x2 = 0 + 171.3333333

Reorder the terms:
-171.3333333 + 171.3333333 + 2x + x2 = 0 + 171.3333333

Combine like terms: -171.3333333 + 171.3333333 = 0.0000000
0.0000000 + 2x + x2 = 0 + 171.3333333
2x + x2 = 0 + 171.3333333

Combine like terms: 0 + 171.3333333 = 171.3333333
2x + x2 = 171.3333333

The x term is 2x.  Take half its coefficient (1).
Square it (1) and add it to both sides.

Add '1' to each side of the equation.
2x + 1 + x2 = 171.3333333 + 1

Reorder the terms:
1 + 2x + x2 = 171.3333333 + 1

Combine like terms: 171.3333333 + 1 = 172.3333333
1 + 2x + x2 = 172.3333333

Factor a perfect square on the left side:
(x + 1)(x + 1) = 172.3333333

Calculate the square root of the right side: 13.12757911

Break this problem into two subproblems by setting 
(x + 1) equal to 13.12757911 and -13.12757911.

Subproblem 1

x + 1 = 13.12757911 Simplifying x + 1 = 13.12757911 Reorder the terms: 1 + x = 13.12757911 Solving 1 + x = 13.12757911 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + x = 13.12757911 + -1 Combine like terms: 1 + -1 = 0 0 + x = 13.12757911 + -1 x = 13.12757911 + -1 Combine like terms: 13.12757911 + -1 = 12.12757911 x = 12.12757911 Simplifying x = 12.12757911

Subproblem 2

x + 1 = -13.12757911 Simplifying x + 1 = -13.12757911 Reorder the terms: 1 + x = -13.12757911 Solving 1 + x = -13.12757911 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + x = -13.12757911 + -1 Combine like terms: 1 + -1 = 0 0 + x = -13.12757911 + -1 x = -13.12757911 + -1 Combine like terms: -13.12757911 + -1 = -14.12757911 x = -14.12757911 Simplifying x = -14.12757911

Solution

The solution to the problem is based on the solutions from the subproblems. x = {12.12757911, -14.12757911}

See similar equations:

| 77-3x=3x+7 | | 10x^3+15x^2+4x+6=0 | | (Z^2)-(5z)+6=0 | | 2n^2+30n=0 | | 14+7p= | | 4n+2(d+3)=12 | | 3(a-11)=45 | | 3(2n+3)=4n+59 | | 4n+51=6n+11 | | 4d+12= | | 2-5y+y^2=0 | | 4/5x7/6 | | 3n-8=2n+7 | | (-5x)-3=y | | 4n-5-n=37 | | 5n+2n-10=74 | | (y+8)^2/11^2 | | b=-11b-7 | | 235=0+k | | B-17=-12 | | 4x-1-x=5-9x | | 4(2n+1)=60 | | 2m+3/9=7 | | 12n-9=123 | | (3y-20)+(y+10)+70=180 | | 45xy=765 | | b=-11 | | -3(x-4)+7x=12 | | 15m-5=235 | | 14+x=62 | | 0.55x+6.99=11.94 | | 18m+3=39 |

Equations solver categories